If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11a^2+9a-24=0
a = 11; b = 9; c = -24;
Δ = b2-4ac
Δ = 92-4·11·(-24)
Δ = 1137
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{1137}}{2*11}=\frac{-9-\sqrt{1137}}{22} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{1137}}{2*11}=\frac{-9+\sqrt{1137}}{22} $
| -2+9r=-11 | | -m+2=-15 | | 10^7x=14 | | 12-3x=5x+44 | | 6(2x-4-x+1)=12 | | m=108=243 | | 182/y*y=182 | | v-27=35 | | -4x+8=2(x+5) | | 16x+2-2x^2=0 | | -2(5x-3)=-54 | | 32xT=68 | | –10+3q=4q | | 4y−2y−4=−1+13= | | |10x+5|-7=28 | | –3n+7=4n | | 12x−14=16x | | 9j−–11=47 | | 5j=–4j+9 | | -3n^2=300 | | 11/2c+23=38 | | Y=2x^2+5x-3x^2+4x+3 | | -27=-3x+5+7x | | 40+14x=2(-4x)-13 | | 2t=7+3t | | x+64+46=180 | | 4y-1+y+6=15 | | 7(2-7x)=-133 | | 1/10(x+106)=-2(8-x) | | .99+1.29n=50 | | (4x+28)=(14x+8)=180 | | X=23x+510 |